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Abstract. In the effort of developing precision agriculture tools, remote sensing has been commonly
considered as an effective technique for weed patch delineation, where weed infestations are detected based
on variations in the plant canopy spectral response. Because the canopy spectral response is important for
weed detection, discussions on the irradiative interaction of light in plant canopies and the effect of
variable soil background on the canopy spectral response are presented in this review. Also, a presentation
of the current techniques for removal of soil effects, including vegetation indices and spectral mixture
analysis, shows that these techniques have not been adequately developed for use in remote sensing-based
weed detection applications. Given the nature of light interaction in a plant canopy, this review proposes
that the spectral response of a plant canopy depends on both the species and the biomass density. Remote
detection of weeds from ground-, aircraft-, and satellite-based platforms has been accomplished on a wide
scale, yet the use of these weed detection methods to make variable-rate herbicide applications has not
occurred as often. By judging success based on variable-rate herbicide applications rather than precise
weed localization, some of the current problems in weed sensing may be skirted.
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Introduction

Since weeds grow in definite patches, successful delineation of patch boundaries
creates a potential for applications of herbicide on a site-specific, need-only basis.
Remote sensing has been widely explored as a tool for detection and mapping of
weeds in agricultural crops (Lamb and Brown, 2001; Moran et al., 1997; Zwiggelaar,
1998). Supporting this practice, numerous inquiries into the nature of weed spatial
distribution have confirmed that weeds generally clustered together in patches within
a field (Marshall, 1988; Rew et al., 1996; Wiles et al., 1992). In addition, substantial
portions of an agricultural field may contain absolutely no weeds or the existence of
weeds below threshold levels at which the crop is threatened (Chancellor and
Goronea, 1994; Johnson et al., 1995; Thornton et al., 1990). By detecting the loca-
tion of weeds within an agricultural field, remote sensing provides a means for the
development of weed maps, such that herbicide applications can occur on a site-
specific basis (Brown and Steckler, 1995; Stafford and Miller, 1993; Thompson ef al.,
1991). Reductions in herbicide use as a result of this practice reduce management
costs for growers (Medlin and Shaw, 2000) and promote environmental friendliness
(Timmermann et al., 2001).

Up till now, the success of remote sensing-based agricultural weed detection has
been limited. Carefully controlled experiments have shown that homogeneous plots
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of crops and weeds are distinguishable in remote sensing images (Menges et al.,
1985; Richardson et al., 1985). However, remote detection of weeds growing natu-
rally in a post-emergence crop setting has proven to be a more difficult task. Most
researchers have used classification algorithms to delineate weed patches based on
statistical variability in the spectral response of soil, crop, and weed/crop canopies.
Classification algorithms work well for pre-emergence sensing of weeds because the
response of bare soil is, in general, spectrally separable from a weed spectral response
(Lamb and Weedon, 1998). However, for post-emergence weed sensing, the ability of
a classification to accurately detect weeds is lessened because weeds and crops exhibit
similar spectral characteristics (Lamb and Brown, 2001). Soil background effects are
another problem that complicates weed detection in post-emergence row crops. Due
to the wavelength-dependent nature of radiation transmission in vegetation cano-
pies, a nonlinear, nonadditive relationship exists in the interaction of radiation be-
tween a plant canopy and its underlying soil. This nonlinear interaction most greatly
influences the canopy spectral response at levels of intermediate canopy coverage
when equal amounts of vegetation and soil are visible above the scene (Huete et al.,
1985). Unfortunately, this is also the stage at which remote sensing must be used to
generate weed maps for post-emergence herbicide applications. To remove soil
background effects from reflectance data, spectral unmixing models have been
employed as a sub-pixel classifier to separate soil and vegetation in images con-
taining mixed spectra (Huete, 1986, Ray and Murray, 1996; Zhang et al., 1998).
However, use of these techniques for applications in agricultural remote sensing have
not appeared often in literature. More commonly, researchers have assessed the
contribution of vegetation in reflectance data using vegetation indices (Bouman,
1992; Huete, 1988; Hurcom and Harrison, 1998; Jackson, 1983; Kauth and Thomas,
1976; Wiegand et al., 1991). The incorporation of both spectral reflectance proper-
ties and a spatial description of crop row positions may also facilitate weed detection
in agricultural row crops (Zwiggelaar, 1998).

Data for remote sensing-based weed research has been collected using sensors
mounted on balloons, remote control crafts, airplanes, satellites, and virtually every
other mechanism capable of flight. Remote sensing-based spectral information has also
been collected for weed detection at ground level. Improvements in sensor technology
over the past two decades have raised the potential for successful weed delineation. In
the 1980s, weed detection research was accomplished using color photography and
analog video equipment (Menges et al., 1985; Richardson et al., 1985). Now, remote
sensing data is commonly collected using digital technology (Lamb and Weedon, 1998;
Medlin et al., 2000). Also, with the introduction of hyperspectral data acquisition
systems, spectral information can now be collected in very narrow wavebands, which
has begun to stimulate more thorough investigations into nature of wavelength
dependent light interaction in plants and plant canopies (Thenkabail ez al., 2000).

Measuring weed distribution

Remote sensing has been used as a tool for agricultural weed detection, because
weed growth is not uniform in agricultural fields. This phenomenon was first
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studied for the development of statistical models that required weed spatial dis-
tribution inputs. Models such as these were important for estimating yield loss
(Brian and Cousens, 1990), establishing economic thresholds for weed control
(Thornton et al., 1990), and simulating variable-rate herbicide applications
(Johnson et al., 1995). Inputs for early models were obtained by collecting ran-
dom samples of weed growth or weed seed bank information under the
assumption that weeds were equally likely to appear at any location within a
sample area (King et al., 1986; Lybecker et al., 1991; Mortensen and Coble,
1991). Random sampling strategies for weed distribution studies are appropriate
if the samples are independent of each other and the sample variance throughout
the field is uniform (Cochran, 1977). However, for aggregated weed populations,
assumptions of equal sample variance do not hold, because the sampling loca-
tions are spatially related (Cardina et al., 1995). Later field investigations used a
grid-based sampling approach to describe the spatial distribution of weed growth
(Marshall, 1988; Mortensen ef al., 1993; Wiles et al., 1992). Results showed that
weed distributions could generally be characterized with the negative binomial
function. In addition, low values for the k-parameter of this function indicated
that the natural spatial distribution of weeds could be characterized as nonuni-
form and patchy. This meant that weeds grew in definite clumps and that the
presence of a weed at a certain location increased the probability that another
weed existed a short distance away. This was true for both broadleaf weeds
(Wiles et al., 1992) and grasses (Marshall, 1988). Incorporation of the inherent
patchiness of weed infestations into statistical models requiring weed distribution
inputs then became a priority for much research in weed science (Brian and
Cousens, 1990; Maxwell and Ghersa, 1992; Navas, 1991; Thornton et al., 1990;
VanGroenendael, 1988).

The use of numerical statistics such as the negative binomial accurately described
the degree of aggregation of weeds, but it could not be used to describe the
arrangement, location, or any spatial aspect of the weed patches within the field
(Cardina et al., 1997; Mortensen et al., 1993). For this reason, researchers began
analyzing weed density data using geostatistics, a technique for descriptive analysis
of spatial variation. The first step in a geostatistical analysis involves the con-
struction of a semivariogram, a plot that relates the variance of point values to the
distance between them. Using information from the semivariogram, an interpolation
method such as kriging is then used to generate data values for unsampled locations
(Lopez-Backovic, 1988). Geostatistical methods have recently been used to generate
weed density maps for fields based on sampled point values (Cardina et al., 1995;
Cardina et al., 1996; Cardina et al., 1997; Donald, 1994; Johnson et al., 1995;
Mortensen et al., 1993). Donald (1994) used geostatistical analysis and kriging to
describe and map the distribution of shoot density and root growth for Canada
thistle (Cirsium arvense (L.) Scop.). Semivariogram functions generated in this
research showed that shoot growth, percent shoot emergence, root bud density, and
fresh root weight for Canada thistle had a high spatial dependence. Cardina et al.
(1995) recognized that the assumptions of spatial statistics would be violated in the
incidence of a large-scale dependence between the population mean and variance.
To insure the independence of mean and variance and the absence of trend, a
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median polishing procedure was used to detrend their data before the construction
of semivariograms. Further geostatistical analysis in this research determined that
the density of common lambsquarters (Chenopodium album L.) was spatially cor-
related at distances up to 16 m. In a related study, Cardina et al. (1996) used geo-
statistics with kriging to relate seedbank and seedling populations for both common
lambsquarters and annual grasses. Better Spearman rank correlations and a greater
visual correspondence of kriged maps were achieved between the seedbank and
seedling populations for common lambsquarters than that for grass species. Cardina
et al. (1997) concluded that semivariograms and kriged maps helped to describe the
scale to which weed populations were aggregated, but further research should focus
on understanding the processes that cause changes in weed spatial distribution over
time.

Experiments based on statistical and geostatistical analysis have shown that a sub-
stantial portion of a grower’s field may contain absolutely no weeds or the existence of
weeds below a set threshold. In a study of 14 soybean (Glycine max (L.) Merr.) fields in
North Carolina, Wiles et al. (1992) found that up to 29% of each field’s experimental
quadrants, measuring 9.1 m by the width of the row spacing, contained no weeds.
Using 35 mm aerial photography, Thornton ez al. (1990) concluded that only 18% of a
wheat (Triticum aestivum L.) field was infested with wild oats (4vena fatua L.). Iron-
ically, observers at ground level claimed that the field was “riddled”” with weeds. In a
survey of 12 soybean fields in eastern Nebraska, Johnson et al. (1995) determined that
onaverage 71% of the sample area contained no broadleaf weeds and 94% contained no
grasses when pre-emergence herbicide was used. In the case that no herbicide was used
before planting, 30% of the sampled area was free of broadleaf weeds and 70% was free
of grass species. Given a hypothetical threshold of 10 weeds per square meter, Cardina
et al.(1996) found that 40% of a soybean field would require herbicide treatment 1 year
while 90% of the same field would require treatment in a different year when weeds
covered a larger area. Similarly, Johnson et al. (1995) determined that herbicide sav-
ings from variable-rate applications would be greatest for weed infestations with a high
degree of patchiness. Rew et al. (1996) used a semi-automated weed mapping system to
analyze the spatial distribution of quackgrass (Elymus repens L.) in five cereal fields.
Visual assessments of the weed growth in these fields indicated that the weed exem-
plified a patchy distribution, but mapping results showed that the size and morphology
of these patches varied both within and between fields. As a result, they concluded that
potential reductions in herbicide use as a result of patch spraying would vary with patch
morphology and infestation level. Chancellor and Goronea (1994) determined that, by
setting threshold values to intermediate levels and removing a partial quantity of weeds
in a field, 70% of the weed threat could be removed using only 50% of the herbicide
required for a blanket application. Additional research is required to determine if the
threshold level for weeds within patches differs from the threshold level for the whole
field (Audsley, 1993).

Mechanism for vegetative reflectance

The science of remote sensing involves the use of ground-, aircraft-, or satellite-
based sensors to monitor the reflection of electromagnetic radiation from the
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traget. As a result, the function of these sensors is very similar to that of the
human eye, which detects a form of electromagnetic radiation called visible light.
Other familiar forms of electromagnetic radiation include radio waves, heat,
microwaves, ultraviolet light, X-rays, and y-rays, and all forms are collectively
grouped, according to wavelength, in the electromagnetic spectrum (Lillesand and
Kiefer, 2000; Tipler, 1991). Though the human eye can see a wide range of
colors, the visible spectrum, which ranges from 400 to 700 nm in wavelength,
represents only a small percentage of the complete electromagnetic spectrum. In
fact, the range of spectral information useful in agricultural remote sensing is
much wider than that of the visible spectrum. Particularly, near-infrared (NIR)
light, which ranges from 700 to 850 nm, is a good indicator of the relative health
of vegetated areas. Generally, an area having very vibrant vegetation will reflect
much more NIR radiation than a more sparsely vegetated area (Qi et al., 1994).
However, since human eyes cannot see NIR light, this important physical
property of vegetation is unnoticeable to a human bystander. With the aid of
optical remote sensors, the reflectance of electromagnetic radiation from vegeta-
tion, including that in the NIR region, can be detected and quantified. Then, with
further processing, this information can be used to formulate a strategy for site-
specific crop management.

Agricultural remote sensing began in the mid-twentieth century, although the
science was not used for weed detection until the 1980s. Early work in agricultural
remote sensing focused on the characteristics and mechanism of reflectance,
absorption, and transmission of radiation in plant leaves (Gates et al., 1965;
Knipling, 1970; Woolley, 1971). Reflectance curves for leaves of a particular species
may differ slightly depending on surface characteristics, thickness, internal leaf
structure, and pigment content. A typical reflectance curve of a healthy tobacco
(Nicotiana tabacum L.) plant leaf, as shown in Knipling (1970), is given in Figure 1.
This graph shows the percent reflectance of incident light as a function of its
wavelength from 400 to 2800 nm. Vegetative reflectance of visible light, 400 to
700 nm, is generally lower than 10% with a peak at 550 nm. As radiation of the
visible wavelengths enter a healthy leaf, the layer of chloroplasts, which contain
chlorophyll, absorbs radiation in wavebands centered at 450 and 670 nm (Lillesand
and Kiefer, 2000). These wavelengths correspond to blue and red light, respectively.
Light with a 550 nm wavelength, which corresponds to green light, is not absorbed
as strongly. Therefore, healthy plants appear green to the human eye, because the
leaves reflect more green light than blue or red light. In the near-infrared region, 700
to 1300 nm, reflectance of incident energy from plant leaves increases to approxi-
mately 50%. The high reflectance at the NIR wavelengths is due to the internal
cellular structure of the leaf (Mestre, 1935). As radiation of NIR wavelengths enters
the leaf’s mesophyll layer, multiple reflections and refractions occur inside the
hydrated plant cells and the air pockets that separate them. Very little of this NIR
energy is absorbed by plant material. As a result, half of the energy is effectively
transmitted downward through the leaf and the other half is reflected upward
through the plane of incidence. Reflectance of energy in the infrared region beyond
1300 nm is fully dependent on the water content of the leaf (Allen and Richardson,
1968). Leaves that are properly hydrated will show distinct humps in the reflectance
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Figure 1. A typical reflectance curve for vegetation given in Knipling (1970), this is the plot of light
reflectance from a tobacco leaf over the range of 400-2800A nm.

curve from 1300 through 2500 nm that are comparable to the reflectance of a sheet
of water at an equivalent thickness to the water content in the leaf. A dehydrated leaf
will not show these distinct humps.

The spectral reflectance of a vegetation canopy will differ from the reflectance
of individual plant leaves due to variations in leaf area and orientation, illumi-
nation angle, shadows, background surfaces such as soil, and the presence of
multiple leaf layers (Colwell, 1974; Knipling, 1970). Lillesaeter (1982) developed a
mathematical model to estimate the spectral response of multiple leaf layers based
on laboratory reflectance measurements of a single leaf. Also, in the research of
Wanjura and Hatfield (1986), the reflectance and transmittance of visible light by
a plant canopy decreased as the leaf areca index (LAI) increased; meaning a
greater portion of visible light was absorbed by the plant canopy. For NIR
radiation, increases in LAI increased the canopy reflectance, but relative changes
in absorption and transmittance were inconsistent between crop species. Note that
LAI is the ratio of the total area of leaves over the area of ground covered by
them. Changing atmospheric conditions, such as sun angle and cloud cover will
also introduce significant amounts of variability in crop canopy spectral reflec-
tance. The effect of a changing source incident angle and view angle has been
studied for crop canopies (Lord et al., 1985) and for individual leaves in a lab-
oratory setting (Woolley, 1971; Walter-Shea et al., 1989). Plant canopy reflectance
is also affected by background materials such as soil and crop residue, and this is
discussed later.

Vegetation indices

Perhaps the most widely accepted method for describing vegetative growth using
reflectance spectra is through the calculation of band ratios or vegetation indices.
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Vegetation indices are spectrally-based values generated through the mathematical
manipulation of reflectance measurements from two or more spectral wavelengths.
Theoretically, the calculation of vegetation indices should provide values that are
more highly correlated to LAI, biomass, or vegetative cover than the raw reflectance
measurements (Wanjura and Hatfield, 1987). A plethora of these indices have been
developed for use in remote sensing research over the past 30 years (Ashley and Rea,
1975; Baret et al., 1989; Huete, 1988; Jackson, 1983; Jordan, 1969; Kauth and
Thomas, 1976; Major et al., 1990; Qi et al., 1994; Richardson and Wiegand, 1977;
Rondeaux ez al., 1996; Tucker, 1979), but the normalized difference vegetation index
(NDVI) (Ashley and Rea, 1975) has become the most popular. The NDVI is
expressed as

ANIR — ‘red

NDVI JNIR + red M)
where Anir 1S the broad-band NIR reflectance and A..4 is the broad-band red
reflectance. In addition to the NDVI, the other two most basic vegetation indices
include the ratio vegetation index (RVI = JNir — Areq) (Jordan, 1969) and the dif-
ference vegetation index (DVI = Anir — Ared) (Tucker, 1979). A comprehensive list of
broad-band vegetation indices can be found in Bannari et al. (1995). By contrasting
a plant’s characteristically low red reflectance with its high NIR reflectance, vege-
tation indices, such as the NDVI, can accurately distinguish pure vegetation spectra
from that of other pure spectra such as soil, water, and rock. However, robustness
issues, which are discussed later, exist in the case of mixed spectra. Discrepancies on
what vegetation indices actually measure also exist in literature. In a simulation
study, Bouman (1992) concluded that the NDVI could estimate LAI with relatively
small errors. Hurcum and Harrison (1998) determined that the NDVI was a better
measure of vegetative cover than LAI and biomass in semi-arid vegetation. Then-
kabail et al. (2000) found that LAI and biomass were more highly correlated with
vegetation indices than crop height and canopy cover. Lawrence and Ripple (1998)
achieved satisfactory results in correlating vegetation indices to canopy cover of
forest vegetation at Mount Saint Helens, Washington. Wiegand et al. (1991)
developed a set of equations relating vegetation indices and cumulative seasonal
vegetation indices to measures of fractional photosynthetically active radiation
(FPAR), cumulative daily photosynthetically active radiation (CDPAR), above-
ground dry photomass, economic yield, LAI, and plant cover. In their study of
cotton (Gossypium hirsutum L.), vegetation indices calculated from Satellite Pour
I’Observation de la Terre (SPOT) imagery, collected from a French earth observa-
tion satellite, were most highly related to cotton boll counts (+* = 0.76) and plant
cover (* = 0.67). In their study of corn (Zea mays L.), vegetation indices were more
related to FPAR (> = 0.97) than yield (+* = 0.33). Lack of consistency in vegetation
index performance can be attributed to the fact that the measured spectral response
of a given environment depends uniquely on the atmosphere, sensor calibration,
ambient lighting conditions, soil background, and the homogeneity of the scene

(Bannari et al., 1995).
Most vegetation indices were developed many years ago for use with broad-
band, multispectral data (Ashley and Rea, 1975). At that time, sensors collected
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only a few bands of reflectance data at very wide bandwidths, so only a limited
number of bands were available for the development of vegetation indices. In
recent years, improvements in sensor technology have provided a new generation
of remote sensing systems that can collect hundreds of spectral bands at very
narrow wavelengths. Since the development of these “hyperspectral’” systems,
many of the data processing techniques once used for multispectral analysis have
needed reevaluation, because the narrow-band datasets contain much more highly
descriptive spectral information than the older datasets. Therefore, a recent goal
in agricultural remote sensing has been to determine which hyperspectral bands
are most useful for crop assessments and to find the optimum width for these
bands (Thenkabail e al., 2000). Thenkabail et al. (2000) measured the spectral
reflectance of cotton, soybeans, corn, potato (Solanum erianthum L.), and sun-
flower (Helianthus L.) over 490 discrete narrow bands and calculated an NDVI-
based index of all possible two-band combinations (119,805 useful combinations).
Using a simple linear regression analysis, each of the 119,805 indices was cor-
related to measures of wet crop biomass and LAI. A contour plot was then
drawn to show which band combinations provided the highest correlations with
these crop characteristics. As another approach to finding optimum hyperspectral
bands, Thenkabail et al. (2000) also employed a multiple linear regression anal-
ysis, a better modeling technique than the standard NDVI according to the re-
search of Lawrence and Ripple (1998). Thenkabail et al. (2000) determined that
the optimal multiple linear regression model included a combination of four
bands. With narrow-band NDVIs and multiple linear regression emerging as the
top analysis tools, Thenkabail ef al. (2000) concluded that the most significant
narrow bands for assessment of crop biophysical variables were located in the
longer wavelength portion of the red region (650 to 700 nm), in the shorter
wavelength portion of the green region (500 to 550 nm), in a section of the NIR
(900 to 940 nm), and in a moisture sensitive area of the NIR (982 nm). Fur-
thermore, in all cases, values generated using these analysis techniques were more
highly correlated to crop characteristics than that from the older broad-band
indices.

Utilizing the continuous nature of hyperspectral datasets, other researchers have
developed derivative-based vegetation indices that involve the calculation of first-
and second-order derivatives of reflectance data. As a result, the slope and curvature
of reflectance data can be analyzed, because the derivative of a function tends to
emphasize changes between wavebands while suppressing the actual reflectance level
(Schowengerdt, 1997). Derivatives of signals have been used extensively in analytical
chemistry to remove background noise and unwanted signals in absorption spec-
troscopy applications. However, until recently, derivatives have not been commonly
used for analysis of remote sensing data. Philpot (1991) provided the following
computations for approximating the first three continuous derivatives at wavelength,
4, using hyperspectral data collected in discrete wavebands:

df  f) = f2")
di A (2)
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where /.~ is the nearest smaller wavelength, A" the nearest larger wavelength, and
277 is the nearest larger wavelength to A". Though derivatives are effective at
removing low frequency background signals from reflectance data, high frequency
noise will be magnified in the process of differentiation if cautionary steps are not
taken to remove the noise beforehand (Demetriades-Shah ez al., 1990). Several fil-
tering methods have been tested for smoothing of reflectance data before the
application of derivatives, including the Savitzky—Golay least-square-fitting proce-
dure, the Kawata—Minami smoothing algorithm, and a simple mean—filter (Tsai and
Philpot, 1998). Each of these methods involves the convolution of a filter window
across all wavelengths available in the reflectance data; however, the Savitzky—Golay
and Kawata—Minami procedures convolve a shaped filter instead of a standard
averaging filter. These specialized filters were developed for more accurate discrim-
ination of signal and noise in comparison to standard filters (Kawata and Minami,
1984; Savitzky and Golay, 1964). In addition, the Savitzky—Golay method provides
an option for differential smoothing, where the filter window performs both the
smoothing and the differentiation operations in one pass. Since the other filtering
methods do not provide this option, a separate differentiation procedure, Eq.(2) for
instance, must be completed after smoothing. In their derivative analysis of rice
(Oryza sativa L.) spectra using these smoothing methods, Tsai and Philpot (1998)
determined that the mean-filter achieved the strongest smoothing but also sup-
pressed the most spectral detail. Also, the Kawata-Minami smoothing procedure did
not remove much noise. Finally, Tsai and Philpot (1998) concluded that the size of
the filter window was the most influential factor on performance.

Derivative analysis is particularly useful for detection of vegetation in reflectance
data due to the presence of the “red edge” located between 680 and 750 nm in the
spectral response of vegetation (Horler et al., 1983). The steep increase in reflectance
across this short waveband corresponds to the transition between absorption of
visible red and reflection of NIR in plant leaves (Gates et al., 1965). The precise
location of the red edge, the point of maximum slope in the red to NIR transition,
depends on the concentration of chlorophyll and other pigments such as amaranthin
within the plant leaves (Curran et al., 1991). Blackburn (1998) developed a set of
derivative reflectance indices for estimating the concentrations of chlorophyll a,
chlorophyll b, and carotenoids in plant leaves and plant canopies. Results showed
that first and second derivatives of pseudo absorbance, the logarithm of inverse
reflectance, were strongly correlated with pigment characteristics in the leaves.
Because derivatives can mask the effect of unwanted signals, Hall e al. (1990) and
Demetriades-Shah et al. (1990) proposed that derivative techniques should be used
for elimination of the soil signal in reflectance measurements taken over partial
canopies. Supporting this idea, Elvidge et al. (1993) determined that a red edge could
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be detected in the mixed response of vegetation and soil where the total percent of
green vegetation cover was as low as 4.8%. Chen et al. (1993) developed an index, the
derivative green vegetation index (DGVI), by integrating the area under the deriv-
ative peaks at the red edge location. Preliminary results indicated that derivative
indices, particularly the second derivative, had potential for reducing soil back-
ground effects in partial canopy reflectance measurements.

Mechanism for soil and vegetation irradiative interaction

Removal of weeds from agricultural crops generally occurs before the crop canopy
closes. As a result, the presence of exposed bare soil and crop residue complicates the
analysis of remote sensing imagery for weed detection, because these materials
exhibit their own unique spectral properties. Surface moisture content has the
greatest influence on the reflectance of soils. Remote sensing research has consis-
tently shown that wet soils reflect less radiation than dry soils (Cipra et al., 1971;
Nitsch et al., 1991). In the visible and NIR wavelengths, this phenomenon is due to
reflections that remain totally internal within the water layer covering the soil (Bach
and Mauser, 1994). Also, water naturally absorbs radiation in other regions of the
spectrum, which causes a reduced reflectance at these wavelengths. Condit (1971)
showed a reduction in wet versus dry soil reflectance over all wavelengths from 320
to 1000 nm for 285 soils across the United States. Bowers and Hanks (1965) con-
cluded that in addition to surface moisture content, organic matter and particle size
also influence a soil’s ability to reflect and absorb radiation. In addition, Stoner and
Baumgardner (1981) found that soil organic matter content and iron oxide com-
position caused spectral reflectance variations in 485 uniformly moist soils of the
United States and Brazil. Since the brightness of a soil is related to its moisture
content (Planet, 1970) and other properties, similarly colored soils may have
analogous reflectance properties in the visible range; however, spectral differences
between 600 nm and 800 nm are more evident (Stoner et al., 1980). Crop residue
cover also causes variations in a soil spectral response. Stoner et al. (1980) showed
that a cover of corn residue reduced the reflectance of a dry and wet soil of the same
type by an equal magnitude. Also, littered sugarcane (Saccharum officinarum L.)
residue had a lower reflectance than bare soil and standing sugarcane residue had a
higher reflectance than bare soil over a range of 500—2500 nm (Gausman et al.,
1975). Results from Nitsch ez al. (1991) suggested that the statistical separability of
bare soil and crop residue reflectivity depends mainly on the type of soil and the type
of residue.

To use remote sensing in a crop field, one has to address the condition of the low
canopy coverage in the early stage of crop development. Extensive research has been
done to examine the effect of soil background on the reflectance of partial canopies.
Wanjura and Hatfield (1986) found an increased concentration of NIR radiation
over the soil surface between crop rows. They concluded that reflections of NIR
radiation from the sides of the plants caused the increased flux of energy toward the
soil between rows. Huete et al. (1985) inserted trays containing various types of soil
between the rows of a cotton canopy and measured the response of the canopy
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interaction with different soil backgrounds throughout the growing season. Various
vegetation indices were shown to inconsistently predict “‘greenness” for partial
canopy covers between 20% and 75%. They concluded that, in this range of cover-
age, standard vegetation indices improperly model the effect of soil brightness on
partial canopy reflectance. Furthermore, soil brightness influences were found to
increase with increasing canopy cover up to 60%, suggesting that soil and plant
spectra collectively interact in a nonadditive, nonlinear fashion to produce a com-
posite spectral response. In a related experiment, Huete (1987) developed a plant-soil
radiant flux model to separate composite spectra into soil reflected and vegetation
reflected components. Depending on the percentage of canopy cover, the soil
reflected component of the model exhibited similar properties to that of the sur-
rounding vegetation, namely a low red reflectance and high NIR reflectance. Huete
(1987) concluded that, in the case of significant canopy coverage, only a small
portion of red radiation reaches the underlying soil surface due to intense absorption
by chlorophyll. On the other hand, the plant leaves readily scatter and transmit NIR
radiation deep into the canopy. Since vegetation can differentially alter the intensity
of radiant flux through the canopy, the spectral response of underlying soil will
exhibit properties of both soil and vegetative reflectivity. Also, since soil brightness
determines the magnitude of this unique soil response, it follows that errors in
“greenness’” measurements by vegetation indices depend on both the quantity of
vegetation available for radiant flux differentiation and the brightness of underlying
soil. At low canopy coverage, vegetative irradiance is not strong enough to signifi-
cantly affect the soil reflectance. At high coverage, the fullness of the canopy
attenuates much of the soil reflectance altogether. At intermediate coverage though,
soil backgrounds magnify the overall vegetative response of the canopy by reflecting
vegetation-transmitted radiation. In Huete’s (1987) research, this magnification at
intermediate canopy coverage generated inconsistencies strongly related to soil
brightness in all of the most common vegetation indices. Heilman and Kress (1987)
reported results similar to Huete (1987) in their study of the reflectance properties
above and below a cotton canopy at various growth stages. In addition, Elvidge and
Lyon (1985) obtained results similar to Huete et al. (1985) in their use of vegetation
indices to assess green biomass in arid and semi-arid regions of Nevada.

Huete and Jackson (1988) used an atmospheric radiant flux model to compare
ground-based irradiance measurements of partial canopies with a simulated
spectral response at the top of clear and turbid atmospheres. Results showed that
the degree of wavelength dependent and independent scattering and absorption of
ground-reflected radiation by the atmosphere depends on the brightness of the
soil background. Vegetation indices calculated from the simulated upper atmo-
spheric spectral responses were also shown to vary with the degree of atmospheric
turbidity. Therefore, they concluded that the spectral response of ground-reflected
radiation over partial canopies measured with sensors in the upper atmosphere
vary as a function of both soil brightness and atmospheric turbidity. Implications
of this study were that aerial and satellite remote sensing data taken over partial
canopy covers will suffer the same soil background effects as seen in the ground-
based studies of Huete ez al. (1985) and Heilman and Kress (1987). In addition to
soil effects though, aerial and satellite remote sensing data also contain atmo-
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spheric effects that vary based on atmospheric conditions (Huete and Jackson,
1988), the path length to the sensor, and the magnitude and wavelength of the
spectral signal (Lillesand and Kiefer, 2000). However, whereas soil background
effects are difficult to quantify and remove from spectral data (Huete and
Jackson, 1988), atmospheric effects are easily removed through image calibration
(Smith and Milton, 1999).

Techniques for removal of soil effects

Standard vegetation indices have not robustly estimated quantities of vegetation in
partial canopies due to the differential flux of red and NIR radiation through the
canopy and the complex interaction of radiation between soil and vegetation (Huete,
1987; Huete and Jackson, 1988; Huete et al., 1985; Jackson et al., 1979). In partic-
ular, the perpendicular vegetation index (PVI) (Richardson and Wiegand, 1977),
which assumes that combinations of soil and vegetative reflectance are additive,
provides undercompensated index values at high vegetation coverage with increasing
undercompensation as soil brightness increases (Huete et al., 1985). Thus, the index
works well for very low canopy coverage when soil and plant interactions are
minimal. On the other hand, ratio indices, such as the NDVI, overcompensate index
values at low canopy coverage with increased overcompensation as soil brightness
decreases (Huete et al., 1985). Thus, these indices work well over areas of very high
coverage. Since standard indices consistently failed to estimate quantities of vege-
tation over partial canopy covers, Huete (1988) developed a soil-adjusted vegetation
index (SAVI) that incorporated a soil-adjustment factor, L, into the NDVI equation.
The SAVI can be expressed as

(ANIR — Ared)

SAVI =
(ANIR + Ared + L)

(1+1L) (5)

where Anjr and Aq are the broad-band spectral responses in the NIR and red
wavebands respectively. For optimal removal of soil influences, Huete (1988) pro-
posed that the L term should vary inversely with the amount of vegetation present.
However, a constant L of 0.5 was used to effectively reduce soil-induced variations in
the vegetation indices for the Huete et al. (1985) data. To further minimize soil
influences, Qi et al. (1994) developed a modified soil-adjusted vegetation index
(MSAVI) that replaced L in the SAVI model with an inductive L function of

1 — MSAVI (6)

since the L term is inversely related with vegetation cover. Then, through mathe-
matical induction, the MSAVI becomes

1
MSAVI = 5 (21NIR +1- \/(ZJVN]R + 1)2 — 8(1]\1[]{ — )Lred)) (7)

where, again, Anjr and A,.q are the broad-band spectral responses. By optimizing the
SAVI model with an iterative process, soil background influences were further



A REVIEW ON REMOTE SENSING OF WEEDS IN AGRICULTURE 489

minimized in the calculation of vegetation indices. Other researchers have developed
soil-adjusted indices similar to the original SAVI model. Baret et al. (1989) devel-
oped the transformed soil-adjusted vegetation index (TSAVI), a modification of the
SAVI that included parameters for adjustment of the bare soil line. Also, the SAVI,,
developed by Major ef al. (1990), incorporated adjustment parameters for solar
angles, leaf area distribution (LAD), and LAI into a ratio index. Though these
models have performed as well as the SAVI and MSAVI, they require inputs other
than the reflectance parameters of the scene of interest. A robust soil-adjusted
vegetation index would not possess this unattractive property. Rondeaux et al.
(1996) reexamined the “SAVI family of indices” and proposed the optimized soil-
adjusted vegetation index (OSAVI) as the best index for agricultural applications.
With variables similar to the SAVI and MSAVI, the OSAVI can be expressed as

(ANTR=Ared) (8)
(ANIR + Zred + 0.16)

So far, research in the area of soil-adjusted vegetation indices has been develop-
mental in nature with results that seem to vary between researchers. In some cases,
soil-adjusted indices have performed worse than the standard vegetation indices. For
example, in a study of forest vegetation at Mount Saint Helens, Washington, the
NDVI performed better than all the soil-adjusted indices (Lawrence and Ripple,
1998). Also, Thenkabail et al. (2000) cites no significant improvement in using soil-
adjusted indices to reduce soil effects in narrow-band data. Further development and
support is necessary before a particular soil-adjusted vegetation index can be stan-
dardized.

Hall et al. (1990) and Demetriades-Shah et al. (1990) proposed derivative-based
vegetation indices as a unique method for the removal of soil background effects
from reflectance data. Chen er al. (1993) implemented this idea for their study of a
partially vegetated pine (Pinus L.) plantation. Calculation of the index values used in
this research involved three steps, including noise removal and reflectance curve
smoothing, differentiation of the reflectance curve, and integration of the area under
the derivative peak that emerged at the red edge. (The reason for integrating a
previously differentiated signal is unclear.) Derivatives were calculated to the first
and second order. Integration under the first derivative curve was performed using
the zero-line and a local baseline. Integration with a local baseline improved the
results by accounting for background information that was not removed in the first
derivative calculation. However, integration under the second derivative curve
provided the best overall results. In a similar pine canopy study, derivative-based
indices measuring the amplitude of the chlorophyll red edge were shown to reduce
the effects of soil background further than any other vegetation index available at
that time, including the NDVI, SAVI, and TSAVI (Elvidge and Chen, 1995). Using
derivative techniques in a laboratory analysis of mixed plant/soil spectra, Datt and
Paterson (2000) concluded that the second derivative transform reduced much of the
soil background effects in the red and NIR wavelengths. Also in their research, the
derivative indices were more strongly correlated to vegetation cover and LAI than
the NDVI. On the other hand, Thenkabail ez al. (2000) cites no success in correlating
derivative-based indices to crop biophysical variables such as LAI and biomass.

OSAVI =
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Similar to the soil-adjusted vegetation indices, further work is required to generate
further understanding of derivative-based indices and their applications in agricul-
tural remote sensing.

Similar to Huete (1987), other researchers have developed mathematical models
to explain the complex irradiative interaction between plant canopies and
underlying soil. Used for “unmixing” of combined spectral responses,
these models generally require as inputs the pure response of each component in
the spectral mixture. Though the simplest unmixing models are linear, where the
spectral responses of each pure component are assumed to be averaged in the
combined response, most researchers believe that the spectral interaction of soil
and vegetation is nonlinear in nature (Borel and Gerstl, 1994; Datt and Paterson,
2000; Huete et al., 1985). The production of acceptable nonlinear models for
unmixing soil and vegetative spectral combinations is a current goal in remote
sensing research (Roberts et al., 1993; Zhang et al., 1998); however, some studies
still employ linear unmixing techniques like those originally used by Huete (1986)
(Hurcom and Harrison, 1998). Huete (1986) used a factor analytic approach to
decompose spectral mixtures of cotton and soil into dry soil, wet soil, and veg-
etation components. According to Huete (1986), the quality of the resulting
separation was highly dependent on the input variables, and acceptable results
were obtained only when the input variables were carefully designed and con-
trolled. More recently, Yao et al. (2002) used unmixing to analyze the combined
spectral response of corn, soil, and shadow. At an elevated position, an RGB
(red, green, blue) digital camera and a field spectrometer were aligned such that
data from both instruments could be simultaneously collected over the same area.
Near to the ground, pure spectra of each component in the mixture were also
collected. Estimates of the percent cover for each component were generated in a
color segmentation of the RGB digital images. Pure spectra and percent cover
values were then used in a linear unmixing procedure to successfully extract the
component spectral response curves for corn and soil. Though spectral unmixing
techniques have great potential as a sub-pixel classifier, literature shows relatively
few instances of its use in agricultural remote sensing applications. A larger body
of research is present for spectral unmixing of vegetation and soil in arid and
desert regions (Hurcom and Harrison, 1998; Ray and Murray, 1996; Roberts
et al., 1993; Roberts et al., 1998). Applications of this research involve unmixing
of imagery with a relatively low spatial resolution, such as that from the airborne
visible-infrared imaging spectrometer (AVIRIS) (Roberts et al., 1993; Roberts
et al., 1998), to map vegetation over relatively large areas of arid and desert
lands. Both lincar and nonlinear unmixing methods have been applied for
delineation of green vegetation, nonphotosynthetic vegetation, soil, and vegetative
shade in these areas (Ray and Murray, 1996; Roberts et al., 1993). A nonlinear
unmixing model has also been developed for mixture analysis of soil, rock, and
vegetation spectra collected with the Airborne Imaging Spectrometer over the
PoYang Lake areca in China (Zhang et al., 1998). Further development of spectral
unmixing methods and the extension of these methods into agricultural may be
greatly beneficial in the forward progress of remote sensing for weed detection
and for precision farming as a whole.
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Methods for weed detection

Post-emergence applications of herbicide for weed control generally occur during
intermediate crop growth stages before canopy closure. As a result, the complex
irradiative interaction between soil and vegetation will have a definite effect on
remote sensing imagery collected for post-emergence weed detection. To further
complicate the image analysis, agricultural fields can potentially contain a variety of
soil types, soil moisture conditions, and crop residues, and each exhibits its own
unique spectral response (Nitsch ef al., 1991). Several other items also affect the
reflectance of a crop/weed canopy, including solar angle and cloud cover (Lord
et al., 1985), the type of weed or crop species present (LaMastus et al., 2000), and the
density of plants (Medlin et al., 2000). Needless to say, the use of remote sensing for
weed detection in agriculture has been somewhat of a daunting task.

Aerial and satellite weed sensing

Aerial remote sensing platforms were first used for weed detection in the early 1980s.
Menges et al. (1985) utilized conventional color (CC) and color infrared (CIR)
photography as a means to distinguish weeds from agricultural crops in experimental
plots. They found that the 850 nm, NIR reflectance between weed and weed/crop
canopies was more variable than the visible reflectance at 550 nm, supporting the use
of CIR over CC photography. In addition, they were successful in distinguishing
climbing milkweed (Aarcostemma cyanchoides L.) in orange (Citrus ortensis (L.)
Osbeck.) groves, ragweed parthenium (Parthenium hysterophorus L.) in carrot
(Daucus carota (L.) var. sativa), johnsongrass (Sorghum halepense (L.) Pers.) in
cotton and in sorghum (Sorghum bicolor (L.) Moench.), London rocket (Sisymbrium
irio L.) in cabbage (Brassica oleracea L.), and Palmer amaranth (Amaranthus palmeri
S. Wats.) in cotton. Richardson et al. (1985) sensed weeds using video cameras with
narrow-band spectral filters over the lenses to separate images into blue, green, red,
and NIR components. With these cameras, they were able to distinguish homoge-
nous plots of johnsongrass and pigweed (Amaranthus palmeri S. Wats.) from weed-
free sorghum, cotton, and cantaloupe (Cucumis melo L.) plots. In comparing the
advantages of video remote sensing and CIR photography, Everitt et al. (1993b)
favored the former for its quick turnaround time, lower cost, and higher compati-
bility with computer image processing systems, and they favored the latter for its
superior image resolution.

Due to the potential interaction of weed spectral responses with crop, soil, and
residue, image analyses for weed detection in past research have mainly involved
thematic classifications (Brown et al., 1994; Everitt et al., 1987; Medlin et al., 2000;
Menges et al., 1985; Richardson et al., 1985). Therefore, weed infestation areas were
delineated based on the statistical variability of the spectral dataset as a whole
(Schowengerdt, 1997). Since the exact weed/crop/soil/residue interaction is difficult
to model, thematic classifications simply categorize the spectral information into
groups having similar spectral properties. For example, a remote sensing image
could be divided into soil/residue, crop, and crop/weed classes assuming these three
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classes were spectrally different. Early research utilized homogeneous plots of weeds
and crops in an attempt to experimentally control the weed, crop, and soil/residue
interaction; however, thematic classifications were still used in the analysis due to
similarities in weed and crop reflectance (Menges et al., 1985; Richardson et al.,
1985). In these experiments, classification accuracies as high as 98.6% were reported
in their use of remote sensing to distinguish between the homogeneous plots of weeds
and crops. Computer-based detection of weeds within a crop stand ‘“‘seemed feasi-
ble” at that time (Richardson et al., 1985). Given its limitations, remote sensing for
weed detection in agriculture progressed slowly since the first experiments by Menges
et al. (1985) and Richardson et al. (1985). Hatfield and Pinter (1993) suggested that a
better understanding of the relationships between infestations, weed species, and
crop growth stage was necessary before remote sensing could be successful in sensing
weeds within crop canopies.

Though remote sensing-based weed detection has been difficult for agricultural
applications, the science has been used extensively to identify weed infestations on
rangelands. In general, thematic classifications were used to delineate rangeland
weeds from soil and other vegetation based on some unique spectral characteristic of
the particular weed. Everitt et al. (1987) used CIR photography to quantify infes-
tations of broom snakeweed (Guitierezia sarothrae (Pursh.) Britt. and Rusby) and
spiny aster (Aster spinosus Benth.) on rangeland areas of Texas and New Mexico.
Due to a more erectophile canopy structure, the NIR reflectance of these weeds was
lower than that of other rangeland species. In related work, Everitt et al. (1992a)
used both CC photography and CC video imagery to detect common goldenweed
(Isocoma coronopifolia (Gray) Greene) and Drummond goldenweed (1. drummondii
(T.&G.) Greene) during their flowering stages. Spectral reflectance measurements of
these plant canopies during flowering showed that the visible reflectance from 630 to
690 nm was greater than that of surrounding plant species and bare soil. By the early
1990s, CIR and CC video cameras were being used more frequently than aerial
photography in remote sensing for rangeland weed detection. Everitt et al. (1992b)
used a multispectral video system that acquired CIR composite imagery to quantify
infestations of false broomweed (Ericameria austrotexana M.C. Johnst.) and spiny
aster. They also used CC video imagery to successfully detect Chinese tamarisk
(Tamarix chinensis Lour.). Satellite imagery was also popular for rangeland weed
detection at that time. Everitt e al. (1993a) used photographic, videographic, and
SPOT satellite images to quantify areas of shin oak (Quercus havardii Rydb.) pop-
ulations on the Rolling and High Plains of Texas. In comparison to other plant
species in this area, plant canopy reflectance measurements of shin oak were lower in
both the visible reflectance from 630 to 690 nm and the NIR reflectance from 760 to
900 nm during its mature phenological stage. Also, Anderson et al. (1993) classified
three-band, multispectral satellite imagery to map infestations of false broomweed
on south Texas rangelands. Researchers also began to incorporate global positioning
systems (GPS) and geographic information systems (GIS) into their remote sensing
experiments for ground-referencing and mapping purposes. Everitt et al. (1993b)
used CC aerial video imagery to detect blackbrush acacia (Acacia rigidula Benth.)
and huisache (A4. farnesiana (L.) Willd.). GPS information was encoded on the
videotape in real-time, and the geographic coordinates of blackbrush acacia and
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huisache infestations were entered into a GIS at a later time. In related research,
Everitt et al. (1994) were able to sense Big Bend loco (Astragalus mollissimus var.
earlei (Rybd.) Tidestr.) and Wooton loco (A. wootonii Sheld.) using both CIR
photography and CIR video imagery due to the weeds’ high NIR reflectance from
760 to 900 nm. GPS data were integrated with both camera systems to provide
geographic references for each image, and this data was later used in a GIS to map
Big Bend loco populations. Everitt et al. (1995) integrated GPS, GIS, and CIR
and CC photography and videography to detect and map leafy spurge (Euphorbia
esula L.). This weed, found on the Great Plains of the United States, produces yellow
bracts in June, which causes its visible reflectance from 630 to 690 nm to be higher
than other species common to the area. By the late 1990s, rangeland remote sensing
was beginning to utilize digital technology for image acquisition. Lass et al. (1996)
obtained digital imagery using four charge-coupled devices (CCDs) with spectral
filters attached. They were able to classify infestations of yellow starthistle (Cen-
taurea solstitialis L.) and common St. Johnswort (Hypercium perforatum L.) from
other rangeland vegetation with omission and commission errors of less than 20%. In
related work, Lass and Callihan (1997) used digital multispectral imagery to delin-
eate yellow hawkweed (Heiracium pratense Tausch) and oxeye daisy (Chrysanthe-
mum leucanthemum L.) within pastures and forest meadows in Idaho. These weeds
were most accurately detected during their flowering stages. Remote sensing research
on rangeland areas of the western and central United States shows the progress of
remote sensing technology for weed detection in the past 15 years.

Initial work in remote sensing for weed detection within crop canopies was
accomplished using CIR video systems similar to those used over the southern
rangelands. Brown et al. (1994) used filters to separate still-video images into blue,
green, red, and NIR narrow-band components for detection of weeds in no-till
corn. A maximum likelihood classification was used to fit the raw data into weed,
corn, and soil/residue classes. The classified image was visually comparable to a
full-color photograph of the same area. Supporting the need for newer technology,
they cite difficulty in converting between video and digital formats. With advances
in digital technology in the 1990s, Lamb and Weedon (1998) used a four-camera,
airborne, digital imaging system to record blue, green, red, and NIR wavebands
over a fallow field of weeds (Pancium effusum R. Br.) in oilseed rape (Brassica
napus L.) stubble. Image analysis included an unsupervised classification of an
NDVI and supervised classifications of multi-band images. Ground referencing was
accomplished by visually mapping weedy areas with a GPS unit on an all-terrain
vehicle (ATV). Overall classification accuracy assessments for this pre-emergence
weed detection application ranged from 85 to 87%. Dissimilar spatial resolution
characteristics between ground-referencing equipment and aerial imaging systems
and observer inconsistencies in recognizing the 25% weed coverage threshold were
cited as sources of error. In similar research, Lamb et al. (1999) collected multi-
spectral imagery of wild oats (4vena spp.) in seedling triticale (X Triticoecale
Wittmack) at spatial resolutions varying from 0.5 to 2 m. Using this imagery, they
correlated the standard NDVI and the SAVI developed by Huete (1988) to
ground-based measurements of weed density with correlation coefficients up to
0.71. Higher correlations were achieved with images of greater spatial resolution.
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Overall, the SAVI was more highly correlated to weed density measurements than
the NDVI. Christensen et al. (1994) correlated the RVI to weed density with a 0.25
coefficient of determination. Medlin et a/. (2000) used a digital multispectral
camera system to detect weed infestations in two soybean fields approximately
eight weeks after planting. Weed density measurements were made by hand-
counting weeds inside a one square-meter area at nearly 1400 sample locations in
each field. Using discriminant analysis techniques to analyze the remote sensing
data, infestations of sicklepod (Senna obtusifolia (L.) Irwin and Barnaby), pitted
morningglory (Ipomoea lacunose L.), and horsenettle (Solanum carolinense L.) were
detected with at least 75% accuracy. In addition, populations of sickelpod and
pitted morningglory with a density greater than 10 per square-meter were classified
with at least 85% accuracy. They cite problems in accurate classification of areas
with no weeds due to the influence of highly variable soil conditions. Vioix et al.
(2001) used a remote control aircraft to obtain color photographs at spatial res-
olutions of less than one centimeter. After digitizing to RGB bitmaps, vegetation
was separated from soil using color properties, and weeds were separated from
crop rows with an algorithm that included a Gabor filter. The method worked well
for crops of corn, sugar beet (Beta vulgaris L.), and onion (Allium cepa L.), though
it failed to detect weeds within the crop rows as a result of the chosen processing
procedure. In recent years, the analysis of multispectral remote sensing imagery for
agricultural weed detection has been accomplished using a variety of processing
techniques including thematic classifications, vegetation indices, and color seg-
mentation.

Recent developments in hyperspectral and multispectral technology have caused a
revival of remote sensing-based weed species detection experiments similar to the
ones originally completed by Menges et al. (1985) and Richardson et al. (1985). In
the newer experiments however, digital hyperspectral and multispectral remote
sensing data have replaced the CIR photographs and video remote sensing data used
in the 1980s. LaMastus et al. (2000) used a four-band multispectral camera system to
detect weed species growing homogeneously at densities ranging from 1 to 8 plants
per square meter. In discriminant analyses over various dates from two growing
seasons, plots of pitted morning glory were correctly classified from other weed
species with accuracies ranging from 69 to 88%. Lower classification accuracies were
seen for plots of sicklepod, entireleaf morning glory (Ipomoea hederacea var. integ-
riscula Gray), and common cocklebur (Xanthium strumarium L.). They suggested
that hyperspectral data might be more successful for weed species delineation than
multispectral data. Varner et al. (2000) grew common cocklebur between rows of
soybeans. Using a supervised classification of hyperspectral remote sensing imagery,
they were able to correctly classify cocklebur in soybeans from weed-free soybeans
on two separate dates with accuracies of 78% and 86%. Copenhaver et al. (2001)
used hyperspectral remote sensing imagery and ground-based spectrometer data to
analyze the separability of narrow-band reflectance between weedy and weed-free
soybean plots. Statistical separability existed across a broad range of the NIR region
when contrasting weed-free soybean plots to soybeans mixed separately with com-
mon lambsquarters, giant foxtail (Setaria faberi Herrm.), shattercane (Sorghum
drummondii (Steud.) Millsp. and Chase), and common waterhemp (Amaranthus rudis
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Sauer), but reflectance separability in the visible wavebands varied more widely
between treatments. When contrasting between the plots containing the four weed
species, separability in spectral data was found at a variety of wavelengths, but
results were inconsistent between data sources and collection dates. The research was
not able to discern whether spectral separability arose from spectral differences in
plant species or simply from variations in stand density. Indeed, the answer to this
question will determine if remote sensing is able to delineate individual weed species.
Due to the novelty of hyperspectral remote sensing, literature on the use of the
technology for weed species delineation exists in small quantities, and available
results are mostly preliminary. However, with continued exploration, techniques for
weed species delineation may be possible using hyperspectral remote sensing imagery
(Bechdol et al., 2000).

Photo-detectors for weed sensing

Detection of weeds in agricultural crops using aerial and satellite remote sensing data
has been a tough problem due to the complex interaction of crop, weed, soil, and
residue spectra. For this reason, other research has focused on the use of ground-
based sensing for weed detection. Early on, ground-based discrimination between
vegetation and soil was accomplished using photo-detectors. These sensors elec-
tronically measured visible and NIR reflectance and subsequently calculated an in-
dex for estimation of vegetative presence over an area. The spatial resolution of
photo-detector systems is the “foot print” (field of view) of the sensor, about 0.3—
1 m on the ground. Within the field of view, a photo-detector can sense an average
“greenness’’ of the area, so that an estimation of vegetation coverage in the area can
be made from the sensor readings.

Hooper et al. (1976) developed a photoelectric sensor that utilized a tungsten—
halogen light source to scan the ground. Light reflected from the ground was then
split into visible and NIR components for electronic calculation of a band ratio,
and a hand-held sprayer was triggered when vegetation was detected. The per-
formance of this sensor was affected by variations in both sunlight intensity and
soil reflectance properties. Yet, in field tests, the volume of chemical used was
highly correlated to total area of weed patches, and approximately 90% of the
grass species within the area were killed as a result of patch spraying. Haggar
et al. (1983) developed a similar weed sensor that calculated a vegetation index
using red and NIR reflectance to distinguish between soil and vegetation. Shearer
and Jones (1991) used photoelectric sensing to detect inter-row weed growth, and
a control circuit was designed for activation of a spray nozzle on a vehicle-based
spray system. Testing in soybeans showed a 15% reduction in herbicide usage
with no apparent decline in the level of weed control. Hanks and Beck (1998)
analyzed two commercially available systems, the Detectspray Model S-50 and
the WeedSeeker Model PhD 1620, that use photoelectric sensor readings to
trigger spray nozzles. Since photoelectric sensors are not able to distinguish be-
tween crop and weeds, plastic spray hoods were used to prevent vegetation within
the crop rows from triggering the spray. The WeedSeeker proved to be a more
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versatile design, because the system incorporated an internal light source, which
made its performance less susceptible to variations in ambient lighting conditions.
Field-testing of the two systems showed that a 63-85% reduction in herbicide use
could be realized with no significant loss in weed control. The Detectspray system
was also tested in research by Blackshaw er al. (1998a) and Blackshaw et al.
(1998b). In this research, the performance of the system was limited by dense or
tall crop residue, and very small weeds were often difficult to detect. Weed species
were detected with varying consistency depending on the number of leaves,
growth stage, and density. Also, since the sprayer relied on ambient lighting
conditions, the lack of solar irradiance at night and at times 70-80 min after
sunrise and before sunset limited the sprayer performance. In spite of these
limitations, Detectspray application results were comparable to conventional
applications on 80% of the test dates, and herbicide usage was reduced from 19—
80% depending on the type of application. Due to the simplicity in processing of
photoelectric data, photoelectric sensors have been easily incorporated into vari-
able-rate herbicide application systems; however, these systems are generally
limited to the detection of significant weed cover between crop rows with
appropriate lighting. Normally, a base rate is needed to control the very young
weeds in the field because photo-detector would not be sensitive to early stage of
weed infestations.

Machine vision for weed sensing

Since photo-detectors cannot distinguish between weeds and crop material, other
researchers have approached ground-based weed sensing using machine vision
technology. In this case, images are collected with ground-based camera systems
and subsequent image processing routines are used to segment vegetation from
soil background and delineate weeds from crop. Segmentation of vegetation from
soil background using machine vision has typically involved the use of color
indices that are sensitive to green reflectance. Woebbecke ez al. (1995a) developed
several color indices using chromatic coordinates to distinguish living plant
material from background. They found that a modified hue index, the 2g-r—b
index, and the green chromatic coordinate performed better than other indices
that were developed. Andreasen et al. (1997) segmented vegetation in digital
images by establishing a threshold for the median-filtered histogram of the green
chromaticity coordinate. An algorithm was developed to determine the threshold
level at which optimum pixel classification occurred and total error probability
was minimized. El-Faki ef al. (2000) used color indices in an application to dis-
tinguish between crops with green stems and weeds with red stems. In this
research, indices were useful for locating green plant material such that the red
stems of the weeds in question were more exposed. Instead of using color
machine vision, Guyer et al. (1986) collected one-band grayscale images of plant/
soil mixtures using a camera that was sensitive over the broad range of 400-
1000 nm. Under incandescent lighting, segmentation of vegetation from soil was
successful when the pixel value threshold was set at 1.5 standard deviations above
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the mean. Thomas et al. (1988) developed an image processing procedure for
measuring plant canopy cover in overhead slide photographs. They cite
measurement inaccuracies in the instances of poor lighting conditions and poor
contrast between plant and soil. Indeed, segmentation of vegetation from soil has
been most successful under controlled lighting conditions in the past, but for
practical applications in precision agriculture image segmentation must perform
adequately under variable lighting conditions. For this reason, Tian and Slaughter
(1998) developed an environmentally adaptive segmentation algorithm (EASA)
for robust segmentation of vegetation under the naturally variable conditions of
outdoor lighting. The algorithm used a partially supervised process based on a
set of manually selected cluster seeds to divide training images into a set number
of classes. After the clustering process, a look-up table (LUT) was derived based
on the Bayes’ decision boundaries for the classes that represented the object of
interest, as defined through human inspection. In this fashion, a new LUT could
be quickly generated for various lighting conditions, crop hybrids, weed species,
and soil types by retraining the classifier. The EASA was implemented with
shape-based pattern recognition in a machine vision system for detection of weeds
in tomato (Lycopersicon esculentum L.) seedlings. Using this system, 65-78% of
the targeted tomato plants were correctly identified, and weeds were incorrectly
identified as crop less than 5% of the time (Tian et al., 1997). Segmentation of
vegetation in variable lighting conditions has also been accomplished using a
binary-encoded genetic algorithm in the hue, saturation, and intensity (HSI) color
space (Tang et al., 2000).

Once vegetation is separated from soil background in an agricultural machine
vision application, weeds are then distinguished from crop using spectral, spatial,
and/or textural information within the images. Franz et al. (1991b) used discri-
minant analysis to identify weed seedlings in digital images based on the spectral
properties of their leaves. Skewness in the red waveband and the mean and
variance in the NIR and blue band were used as features for discrimination
between weed species. Leaf orientation with respect to illumination source was
cited as the major source of error; however, for 48 observations in which this was
not a factor, only 6.25% of the observations were misclassified. Zhang and
Chaisattapagon (1995) calculated gray level ratios of images collected using a
variety of color filters. Red and green filters were useful in identifying weeds
having reddish stems, such as redroot pigweed (A. retroflexus L.), kochia (Bassia
scoparia (L.) Schrad.), and Russian thistle (Salsola iberica Sennen and Pau). Jia
and Krutz (1992) developed an algorithm to locate corn plants by detecting,
through a spectral analysis, the main veins of the plant leaves. Using a technique
such as this, weeds could be identified indirectly by assigning to the weed cate-
gory all plants that do not have a unique crop feature, such as a corn plant’s
thick main vein. Instead of spectral properties, other researchers have used leaf
shape properties to distinguish between plant species. Guyer et al. (1986) defined
four shape-based parameters for leaves including complexity, eclongatedness,
central moment, and principle axis moment. Each of these parameters was
measured for eight plant species at various growth stages through the processing
of grayscale images. They concluded that weed leaves showed discernible differ-
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ences in shape-based properties. In further research, Guyer et al. (1993) developed
13 high-level shape features from 17 leaf measurements with the intent to
quantitatively determine the more subjective properties of leaf shape. In some
cases, the machine vision system and human evaluators chose the same subjective
shape property for a leaf 65% of the time. Woebbecke et al. (1995b) performed
an analysis using eleven shape features in images of corn, soybeans, and ten
weeds found in the mid-western United States. Dicots and monocots were most
successfully discriminated between 14 and 23 days after emergence using aspect
and the first invariant central moment as features for classifying leaf shape.
Similarly, Zhang and Chaisattapagon (1995) found that five shape-based features
could effectively distinguish the leaves of redroot pigweed, kochia, and wild
buckwheat (Polygonum convolvulus L.) from wheat leaves. However, the shape
parameters were not able to differentiate between the broadleaf weed species.
Problems in using shape features for identification of in situ plant species include
the presence of occluded or overlapped leaves (Franz et al., 1991a), variations in
plant leaf size and shape as a function of growth stage (Woebbecke et al., 1995b),
and the variable three-dimensional orientation of leaves in relation to the machine
vision sensor (Franz et al., 1991b). The third method for discrimination of plant
species in ground-based weed detection applications involves the measurement of
the textural appearance of a plant or plant canopy as a whole. Shearer and
Holmes (1990) used 33 color texture features, calculated from co-occurrence
matrices of image hue, saturation, and intensity, to identify nursery plants with
discriminant analysis. A classification accuracy of 91% was obtained in an
analysis using 350 observations of seven plants. Shearer and Holmes (1990)
concluded that the use of both hue and intensity information together in the
analysis provided a much better result than intensity alone. Burks et al. (2000)
used color co-occurrence matrices to calculate textural features and achieved a
93% overall accuracy in classifying between five weed species and soil using hue
and saturation only. Meyer et al. (1998) also determined textural features from
color co-occurrence matrices, and classification accuracies were 93% and 85% for
classifying between grasses and broadleaf weeds, respectively. Lower classification
accuracies, between 30% and 70%, were seen in the attempts to classify between
individual species. Zhang and Chaisattapagon (1995) calculated the Fourier
spectrum of leaf images and found that the multidirectional pattern of broadleaf
weeds such as wild buckwheat, Palmer amaranth, and kochia could be used to
distinguish the weeds from wheat, which showed a unidirectional textural pattern
in Fourier space. They also used Fourier analysis to analyze the fineness of plant
canopy textures.

Comparing with other methods, machine vision weed sensing in the field is a
“information rich” system. The spatial resolution of the machine vision system is
generally much higher—between 0.0003 and 0.005 m per pixel depending on the
system setup. The image processing results are more accurate because the reso-
lution and better color definition of image pixels. Although the system cost is
relatively higher, the potential of machine vision system in weed sensing for real-
time selective herbicide application has been shown by several researchers (Lee,
1999; Tian, 2002).
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Future research needs

A large portion of this review focuses on the mechanism of light reflectance in plant
leaves and the nonlinear interaction of radiation between plant canopies and the soil
background. These are fundamental issues in the development of a proper remote
sensing-based weed detection strategy. As shown by Huete (1987), the nonlinearity
of the spectral response over partial plant canopies is most problematic at inter-
mediate levels of canopy coverage. This is precisely the time that remote sensing
imagery must be collected for weed detection in post-emergence crops. In addition,
Thorp (2002) speculated that, at the time weed detection must occur, soil back-
ground may actually have a greater influence on the spectral response of a field than
vegetation. In this research, remote sensing-based weed maps were developed for
post-emergence variable-rate herbicide applications in separate fields over two
growing seasons. As a precursor to weed map development, Thorp (2002) performed
a simple principle component (PC) transformation on each image and correlated the
PC transformed bands to ground reference measures of vegetation cover. In all cases,
the second PC band was more highly correlated to vegetation cover than the first PC
band. Also, the first PC band was most visually comparable to a bare soil image of
the field, suggesting that soil background contributed more to the overall variance in
the scene than vegetation. Perhaps the strength of the soil influence has been
underestimated in the past, because research has focused so intently on weed
delineation. However, it can be ignored no longer. Future work should focus on the
improvement of techniques for reduction of the soil influence and the incorporation
of these techniques into weed map development strategies. Pinpointing the precise
level of canopy coverage at which soil influences are no longer a problem would also
be beneficial.

Vegetation indices have been used quite regularly to assess the vigor of vege-
tation over an area, and some have been developed specifically for minimizing
soil background effects in the spectral response of partial canopies (Huete, 1988).
Literally hundreds of vegetation indices exist, yet none has emerged as the pan-
acea for use in any situation. In fact, the performance of these indices seems to
be quite circumstantial, as researchers continually report conflicting statements as
to which indices give the best results. According to Bannari et al. (19995),
inconsistancy in index performance can be attributed to the atmosphere, sensor
calibration, sensor viewing conditions, solar angle, and soil background. The
matter is further complicated when vegetation indices are used to analyze the
spectra of heterogeneous environments, such as that of post-emergence row crops
at intermediate growth stages. Current vegetation indices are therefore not ade-
quate for reducing the soil signal in remote sensing imagery collected for detec-
tion of weeds in post-emergence crops. As a solution to this problem, several
areas for further exploration were discussed in this review, namely hyperspectral
indices and spectral unmixing. Spectral unmixing provides a unique opportunity,
because, if done properly, a composite spectral response can be broken into its
component responses. Given the complexity of reflectance signals collected for
agricultural weed detection, perhaps an accurate dissection of the composite
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signal into soil and vegetative components should be the first step in the devel-
opment of an effective data processing strategy. We must imagine how the images
would look if crops and weeds grew in soil with the reflectance properties of a
blackbody. In this case, the spectral response of the field would depend most
strongly on the presence of vegetation. This phenomenon could actually be
studied quite easily by inserting a material with a very low reflectivity, such as
black velvet (Tipler, 1991), between the rows of a crop canopy. By understanding
the soil background influence more thoroughly, procedures could then be devel-
oped for purification of images through the removal of the soil signal.

After the soil background issue is addressed, researchers must find a solution to
the weed species delineation argument. Some believe that reflectance data can be
used to distinguish between weed species (LaMastus et al., 2000), while others argue
that the reflectance signal can only be used to quantify an area’s biomass density.
Most definitely, the solution to this problem has been clouded by the difficulties in
achieving a “pure” reflectance signal for a given species. With this in mind, we
should begin by studying species that are capable of producing a very lush canopy
density, so that soil background influences and species competition are minimized.
By collecting spectral readings of several lush stands of species at various growth
stages and simultaneously harvesting plant material for biomass analysis at each
stage, the dependence of spectral readings on biomass could be determined for these
species. Significantly different reflectance values at equal biomass for two species
would then support the cause for believers in weed species delineation. Some studies
have compared the spectral responses of species without considering the total bio-
mass present at the time of spectral data collection (Copenhaver et al., 2001). Yet,
given the nature of light interaction in a plant canopy, it seems more probable that
the spectral response of a lushly vegetated area would depend on both the species and
the quantity of biomass rather than weed species or biomass alone. Often there is no
black or white solution to a given problem, and perhaps this is true for the argument
concerning weed species delineation.

Once remote sensing data can be correctly interpreted for detection of weeds, the
next step involves the implementation of a proper data acquisition system. Essen-
tially, there are two types of passive sensors: imaging sensors and nonimaging sen-
sors. These can be further divided into multispectral and hyperspectral sensors, and
they can all be incorporated onto ground-, aircraft-, or satellite-based platforms.
This review has presented multiple examples in which weeds have been detected
using a variety of sensors on a variety of platforms, but which method will work best
for agricultural weed detection? Currently, each type of system has its own unique
advantages and limitations (Moran et al., 1997), and it is unclear which data
acquisition strategy embodies the correct direction for the future of agricultural weed
sensing. In order for progress to be made in this arena, perhaps future work should
focus more emphatically on the use of weed maps to make variable-rate herbicide
applications. To date, research has focused very intently on the development of
techniques for weed detection, but a relatively small body of work exists in the actual
implementation of these techniques in variable-rate herbicide applications. By taking
the current weed detection technology to the next level, perhaps the most crucial
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attributes of a weed sensing strategy could be identified, and maybe some of the
more difficult weed sensing problems could be circumvented.

Rigorous completion of variable-rate herbicide applications would also address
another problem in this area. Namely, the successful delineation of weeds does
not necessarily guarantee the success of variable-rate herbicide applications,
because there are currently no methods for assigning rates of herbicide based on
the results of a weed sensing procedure. Maps for variable-rate herbicide
applications have been generated using spectral response properties, percent cover
measurements, and weed density measurements. However, there exists no equa-
tion that relates any of these properties to a rate of herbicide. In fact, label
recommendations for many foliar herbicides suggest that herbicide rates are more
dependent on weed size, height, and species rather than spectral properties, per-
cent cover, or weed density. Other factors, which influence herbicide rate selec-
tions to a lesser degree, include the age of the weeds, the level of plant activity at
the time of spraying, the weed history, and the desired level of weed control.
Therefore, to correctly apply herbicide to agricultural crops in a site-specific
manner, a weed sensing procedure must be coupled with other pertinent infor-
mation such that herbicide rates can be correctly assigned for adequate control of
a particular field’s weed infestation condition.

Conclusions

The purpose of agricultural weed detection is to map the spatial variability of weed
growth, such that herbicide can be applied on a site-specific, need-only basis. In
support of this practice, the inherent patchiness of weed growth has been verified.
These studies have also shown much variability in the size, morphology, and dis-
tribution of weed patches both within and between agricultural fields. Remote
sensing has been used for weed detection, because weedy areas of an agricultural field
should theoretically have a stronger vegetative spectral response than areas without
weed pressure. However, the presence of variable soil backgrounds and residue
covers complicates this spectral response and hinders the analysis of vegetative
presence. These soil background effects have been ignored in most remote sensing-
based weed detection applications. Very rarely have techniques been used to quantify
and reduce the soil background effects in imagery before completing the analysis for
weed cover. This step must be incorporated into future data processing strategies.
Vegetation indices and spectral mixture analysis have been employed as tools for
removal of the soil signal in the reflectance of partial canopies. Further development
of these techniques may be beneficial for studying the relative contribution of crop,
weeds, and soil in image pixels and for reducing the effects of unwanted signals. Since
it is difficult to obtain a “pure” spectral response of a given species, it is unclear
whether remote sensing can be used to distinguish between weed species or if it
simply detects differences in biomass density. To address this problem, future work
should focus on comparing the spectral response of various species while also con-
sidering the level of biomass at the time of reflectance data collection. Hyperspectral
data, with its greater spectral resolution, may be the best choice for investigations
such as these. Finally, in studying the relevant literature for this review, it was
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interesting to notice how often studies failed to extend their proposed weed detection
techniques into the arena of variable-rate herbicide applications. Since this is the
ultimate goal for any weed detection method, the current focus should be modified
such that proposed weed detection techniques are more often used to make variable-
rate herbicide applications.
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